Software and Energy Aware Computation

John Gallagher, Roskilde U, DK ENTRA Kim G Larsen, Aalborg U, DK SENSATION

Software & Resource Usage

ICT Energy PhD School, Fiuiggi, July 2015

Kim G. Larsen [2]

Model-Based Analysis, Synthesis and Optimization of Energy-Aware Systems

Kim G. Larsen Aalborg University, DENMARK

|055

SE SA UN Self Energy–Supporting Autonomous Computation

FET Proactive: Minimising Energy Consumption of Computing to the Limit (MINECC)

Partners

- AAU: Aalborg University, Denmark
- RWTH: RWTH Aachen University, Germany
- ESI: Embedded Systems Institute, The Netherlands
- INRIA: Institut National de Recherche en Informatique et Automatiqe, France
- SAU: Saarbrücken University, Germany
- UT: University of Twente, The Netherlands
- GOM: GOMSpace, Denmark
- RS: Recore Systems, The Netherlands
- STM: STMicroelectronics, France

Main Objectives

SE SATION

- 1. To develop adequate **automata based modeling formalisms** to describe a wide range of energyrelated systems, and tailored towards power-aware optimization.
- 2. To advance **quantitative model-checking** techniques and tools to allow for scalable model-based quantitative analysis of energy-aware models.

Main Objectives

- SE SATION
- 3. To provide algorithmic and tool support for automatic synthesis of energy-optimal adaptive and dynamic energy management strategies.
- 4. To provide a design exploration method allowing to analyse the effect of design choices in terms of a trade-off between energy, performance and reliability.
- 5. To experimentally demonstrate the radically increased scale of systems being energy-wise selfsupporting ranging based on cases arising from space missions, streaming applications and software-defined radios.

 Increase by orders of magnitude the scope of computing systems and applications which are self-supporting from an energy perspective.

 To arrive at this we will build upon sound modeling and composition concepts and innovative quantitative verification technologies, allowing to optimize energy-efficiency with a trade-off of other resources (timing, memory).

Resource Analysis & Optimization

ICT Energy PhD School, Fiuiggi, July 2015

SE SA IO

QUANTITATIVE Model Checking

Kim Larsen [10]

Model Checking

E Allen Emerson

Ed Clarke

Joseph Sifakis

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [11]

Models

ALW(OFF) EVEN ON)

ALW(OFF) EVEN_{s<3, p>0.90} ON)

Models

ALW(OFF) EVEN_{t<5, p>0.90} ON)

ALW(OFF) EVEN_{E<0.9, p>0.90} ON)

[13]

Models

Kim Larsen [14]

UPPAAL Tool Suit

Contributors

@Elsewhere

 Emmanuel Fleury, Didier Lime, Johan Bengtsson, Fredrik Larsson, Kåre J Kristoffersen, Tobias Amnell, Thomas Hune, Oliver Möller, Elena Fersman, Carsten Weise, David Griffioen, Ansgar Fehnker, Frits Vandraager, Theo Ruys, Pedro D'Argenio, J-P Katoen, Jan Tretmans, Judi Romijn, Ed Brinksma, Martijn Hendriks, Klaus Havelund, Franck Cassez, Magnus Lindahl, Francois Laroussinie, Patricia Bouyer, Augusto Burgueno, H. Bowmann, D. Latella, M. Massink, G. Faconti, Kristina Lundqvist, Lars Asplund, Justin Pearson...

Origin of UPPAAL

Overview

- Timed Automata
 - Verification
- Priced Timed Automata
 - Optimal Scheduling (multicore applications)
 - Optimal Infinite Scheduling
 - Multi objective optimization

Schedulability Analysis & Scheduling

- Single Core, Multi Core
- Dynamic voltage Scheduling
- Energy Automata

Stochastic Priced Timed Automata / UPPAAL SMC

- Statistical Model Checking
- Low Power Medium Access Protocol
- Stochastic Hybrid Automata
- Energy–Aware Buildings
- Battery–Aware Scheduling

Stochastic Priced Timed Games

- Optimal & Safe Synteses
- Energy-Aware and Optimal Satelitte Scheduling
- Conclusion

/ UPPAAL STRATEGO

Kim Larsen [18]

/ UPPAAL

/ UPPAAL CORA

Overview

Timed Automata

Verification

- Priced Timed Automata
 - Optimal Scheduling (multicore applications)
 - Optimal Infinite Scheduling
 - Multi objective optimization
- Schedulability Analysis & Scheduling
 - Single Core, Multi Core
 - Dynamic voltage Scheduling
 - Energy Automata
- Stochastic Priced Timed Automata / UPPAAL SMC
 - Statistical Model Checking
 - Low Power Medium Access Protocol
 - Stochastic Hybrid Automata
 - Energy–Aware Buildings
 - Battery–Aware Scheduling

Stochastic Priced Timed Games

- Optimal & Safe Synteses
- Energy–Aware and Optimal Satelitte Scheduling
- Conclusion

/ UPPAAL STRATEGO

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [19]

/ UPPAAL

/ UPPAAL CORA

Timed Automata

A Dumb Light Controller

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [21]

Timed Automata

[Alur & Dill'89]

A Timed Automata (Semantics)

States:	
(location, x=v) where v2	R

Transitions:	
	(Off , x=0)
delay 4.32	\rightarrow (Off , x=4.32)
press?	\rightarrow (Light , x=0)
delay 2.51	\rightarrow (Light , x=2.51)
press?	\rightarrow (Bright , x=2.51)

Kim Larsen [23]

Intelligent Light Controller

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [24]

Intelligent Light Controller

Intellingent Light Control

DEMO

Train Crossing

Train Crossing

Train Crossing

[31]

Timed Automata [Train]

Finite State Control + Real Valued Clocks

=

DEMO

Logical Specifications

- Validation Properties
 - Possibly: E<> P
- Safety Properties

•	Invariant:	A[] <i>P</i>

- Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{\cdot t} Q$

The expressions *P* and *Q* must be type safe, side effect free, and evaluate to a boolean.

Only references to integer variables, constants, clocks, and locations are allowed (and arrays of these).

Kim Larsen [34]

THE "secret" of UPPAAL

C:\Users\kgl\Desktop\DESKTOP12\UPPAAL	\UPPAAL examples\LCCC2013\SMC\TrainGateCPS14.xml - UPPAAL	
File Edit View Tools Options Help		
Editor Simulator ConcreteSimulator Verifier You	ndrasil	
Enabled Transitions	Train(0) Train(1)	
go[ironi()]: Gate → Irain(5)		
	$Train(4), x \in [23.60]$	=
-	$T_{r=1} (F) = [20, 6F]$	
	$\operatorname{rain}(5).x \in [30,05]$	
► Next Ø Reset	Train(0).x - time ≤ -50	
Simulation Trace	$\square < C$ Train(0) $x = Train(1) x = [10, 20]$	
Train(1)	1100000000000000000000000000000000000	
(Safe, Cross, Stop, Stop, Stop, Stop, Occ)	$\text{Train}(0).x - \text{Train}(2).x \in [0,5]$	
leave[1]: Train(1) → Gate[1]	$T_{rain}(2) \times T_{rain}(0) \times C[17,40]$	
(Safe, Safe, Stop, Stop, Stop, Stop, Free)	$11aiii(3).x - 11aiii(0).x \in [17,40]$	
(Safe, Safe, Stop, Stop, Stop, Start, Occ)	$Train(4).x - Train(0).x \in [10,35]$	-
appr[0]: Train(0) \rightarrow Gate[0]	$Train(2) \times Train(1) \times C [7 20]$	
	$m(2).x = m(1).x \in [7, 20]$	
Trace File:	$Train(2).x - Train(1).x \in [7,20]$	
√I Prev ► Next ► Replay	$Train(3).x - Train(5).x \in [-5,0]$	
G Open I Save → Random	$Train(4).x - Train(3).x \in [-20,0]$	
	$-\text{Train(5).x} - \text{Train(0).x} \in [17,40]$	
	$Train(5).x - Train(4).x \in [0,20]$	
Slow Fast		-
		=,

ICT Energy PhD School, Fiuiggi, July 2015

5

Zones – From Finite to Efficiency

The number of regions is $n! \cdot 2^n \cdot \prod_{x \in C} (2c_x + 2)$.

Kim Larsen [36]

Zones – Operations

Datastructures for Zones

- Difference Bounded Matrices (DBMs)
- Minimal Constraint Form [RTSS97]

Clock Difference

Diagrams

[CAV99]

ICT Energy PhD School, Fiuiggi, July 2015

Overview

- Timed Automata
 - Verification
- Priced Timed Automata
 - Optimal Scheduling (multicore applications)
 - Optimal Infinite Scheduling
 - Multi objective optimization
- Schedulability Analysis & Scheduling
 - Single Core, Multi Core
 - Dynamic voltage Scheduling
 - Energy Automata
- Stochastic Priced Timed Automata / UPPAAL SMC
 - Statistical Model Checking
 - Low Power Medium Access Protocol
 - Stochastic Hybrid Automata
 - Energy–Aware Buildings
 - Battery–Aware Scheduling
- Stochastic Priced Timed Games
 - Optimal & Safe Synteses
 - Energy-Aware and Optimal Satelitte Scheduling
- Conclusion

/ UPPAAL CORA

UPPAAL

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [39]

/ UPPAAL STRATEGO

Priced Timed Automata

Embedded Systems

Tasks: Computation times Deadlines Dependencies Arrival patterns uncertainties

Scheduling Principles (OS) EDF, FPS, RMS, DVS, .. Resources Execution platform Energy, Memory Networks Drivers uncertainties

ICT Energy PhD School, Fiuiggi,

Timing Analyses

- Worst Case Analysis: of execution time, energy, memory, etc. of an isolated task.
- Schedulability analysis: Verify no deadlines are violated in higher level system for given sched. princinple
- Scheduling: Assign resources to tasks

Kim Guldstrand Larsen [42]

Resources & Tasks

Kim Larsen [44]

ICT Energy PhD School, Fiuiggi, July 2015

Experimental Results

nama	#tasks	#chains	# machines	ontimal	ТА
name	#tasks			optimar	17
001	437	125	4	1178	1182
000	452	43	20	537	537
018	730	175	10	700	704
074	1007	66	12	891	894
021	1145	88	20	605	612
228	1187	293	8	1570	1574
071	1193	124	20	629	634
271	1348	127	12	1163	1164
237	1566	152	12	1340	1342
231	1664	101	16	t.o.	1137
235	1782	218	16	t.o.	1150
233	1980	207	19	1118	1121
294	2014	141	17	1257	1261
295	2168	965	18	1318	1322
292	2333	318	3	8009	8009
298	2399	303	10	2471	2473

Symbolic A* Branch-&-Bound 60 sec

Abdeddaïm, Kerbaa, Maler

Task Graph Scheduling – Revisited

Task Graph Scheduling – Revisited

Task Graph Scheduling – Revisited

A simple example

Kim Larsen [52]

A simple example

→ strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [53]

Priced Zones

[CAV01]

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [54]

Priced Zones – Reset

x := 0clock y A zone Z: $1 \cdot x \cdot 2 \not$ Æ $0 \cdot y \cdot 2$ Æ **Z**[x=0]: x=0Æ x - y] 0 $0 \cdot y \cdot 2$ $\mathbf{2}$ C = 1 cy + 3A cost function C C(x,y) =1 $2\phi x - 1\phi y + 3$ C = -1cy + 50 clock x0 $\mathbf{2}$ 1

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [55]

[CAV01]

Symbolic Branch & Bound Algorithm

 $Cost := \infty$ Passed := \emptyset Waiting := $\{(l_0, Z_0)\}$ while Waiting $\neq \emptyset$ do **select** (l, Z) from Waiting $Z' \leq Z$ if $l = l_q$ and minCost(Z) < Cost then Z' is bigger & Cost := minCost(Z)cheaper than Z if minCost(Z) + Rem_(l,Z) $\geq \mathcal{G}$ ۲né if for all (l, Z') in Passed: $Z' \nleq Z$ then · is a well-quasi add (l, Z) to Passed ordering which add all (l', Z') with $(l, Z) \rightarrow (l', Z')$ guarantees termination! return Cost

Example: Aircraft Landing

- E earliest landing time
- **T** target time
- L latest time
- e cost rate for being early
- cost rate for being late
- **d** fixed cost for being late

Planes have to keep separation distance to avoid turbulences caused by preceding planes

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [57]

Example: Aircraft Landing

- 4 earliest landing time
- **5** target time
- 9 latest time
- **3** cost rate for being early
- **1** cost rate for being late
- 2 fixed cost for being late

Planes have to keep separation distance to avoid turbulences caused by preceding planes

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [58]

Aircraft Landing

Source of examples: Baesley et al'2000

	problem instance	1	2	3	4	5	6	7
	number of planes	10	15	20	20	20	30	44
	number of types	2	2	2	2	2	4	2
1	optimal value	700	1480	820	2520	3100	24442	1550
	explored states	481	2149	920	5693	15069	122	662
	cputime (secs)	4.19	25.30	11.05	87.67	220.22	0.60	4.27
2	optimal value	90	210	60	640	650	554	0
	explored states	1218	1797	669	28821	47993	9035	92
	cputime (secs)	17.87	39.92	11.02	755.84	1085.08	123.72	1.06
3	optimal value	0	0	C	130	170	0	
	explored states	24	46	84	207715	189602	62	N/A
	cputime (secs)	0.36	0.70	1.71	14786.19	12461.47	0.68	
4	optimal value				0	0		
	explored states	N/A	N/A	N/A	65	64	N/A	N/A
	cputime (secs)				1.97	1.53		

Symbolic Branch & Bound Algorithm

Zone based $Cost := \infty$ Linear Programming Passed := \emptyset **Problems** Waiting := $\{(l_0, Z_0)\}$ \rightarrow (dualize) while Waiting $\neq \emptyset$ do **Min Cost Flow** select (l, Z) from Waiting if $l = l_q$ and minCost(Z) Cost then Cost := minSoct(Z)if minCost(Z) + Rem_(l,Z) > Cost then break</sub>if for all (i, Z') in Passed. $Z' \nleq Z$ then add (l, Z) to Passed add all (l', Z') with $(l, Z) \rightarrow (l', Z')$ to Waiting return Cost

ICT Energy PhD School, Fiuiggi, July 2015

Optimal

Schedule

Kim Larsen [61]

Optimal Infinite Scheduling

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [62]

Optimal Infinite Scheduling

ICT Energy PhD School, Fiuiggi, July 2015

Optimal Infinite Scheduling

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [64]

Mean Pay-Off Optimality

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [65]

Discount Optimality $\lambda < 1$: discounting factor

Soundness of Corner Point Abstraction

Lemma

Let Z be a (bounded, closed) zone and let f be a (well-defined) function over Z defined by:

$$f: (t_1, \dots, t_n) \mapsto \frac{a_1 t_1 + \dots + a_n t_n + a}{c_1 t_1 + \dots + c_n t_n + d}$$

then $\inf_Z f$ is obtained at a corner-point of Z (with integer coefficients).

Lemma

Let Z be a (bounded, closed) zone and let f be a function over Z defined by:

$$f: (t_1, \ldots, t_n) \mapsto a_1 \lambda^{t_1} + \cdots + a_n \lambda^{t_n} + a$$

then $\inf_Z f$ is obtained at a corner-point of Z (with integer coefficients).

Kim Larsen [67]

Multiple Objective Scheduling

Overview

- Timed Automata
 - Verification
- Priced Timed Automata
 - Optimal Scheduling (multicore applications)
 - Optimal Infinite Scheduling
 - Multi objective optimization

Schedulability Analysis & Scheduling

- Single Core, Multi Core
- Dynamic voltage Scheduling
- Energy Automata
- Stochastic Priced Timed Automata / UPPAAL SMC
 - Statistical Model Checking
 - Low Power Medium Access Protocol
 - Stochastic Hybrid Automata
 - Energy–Aware Buildings
 - Battery–Aware Scheduling

Stochastic Priced Timed Games

- Optimal & Safe Synteses
- Energy–Aware and Optimal Satelitte Scheduling
- Conclusion

/ UPPAAL STRATEGO

Kim Larsen [69]

/ UPPAAL

/ UPPAAL CORA

Schedulability & Performance Analysis

Task Scheduling

utilization of CPU

P(i), UNI[E(i), L(i)], .. : period or earliest/latest arrival or .. for T_i C(i), UNI[BC(i),WC(i)] : execution time for T_i D(i): deadline for T_i

Modeling Task

Modeling Scheduler

Kim Larsen [73]

Modeling Queue

Kim Larsen [74]

Schedulability = Safety Property

Add :(Task0.Error or Task1.Error or ...)

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [75]

Schedulability Analysis

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [76]

Schedulability Analysis

ICT Energy PhD School, Fiuiggi, July 2015

Performance Analysis

sup : Task2.r, Task3.r

Kim Larsen [78]

ICT Energy PhD School, Fiuiggi, July 2015

Performance Analysis

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [79]

Herschel-Planck Scientific Mission at ESA

Attitude and Orbit Control Software TERMA A/S Steen Ulrik Palm, Jan Storbank Pedersen, Poul Hougaard

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [80]

Herschel & Planck Satelites

Application software (ASW)

- built and tested by Terma:
- does attitude and orbit control, telecommanding, fault detection isolation and recovery.
- Basic software (BSW)
 - low level communication and scheduling periodic events.
- Real-time operating system (RTEMS)
 - Priority Ceiling for ASW,
 - Priority Inheritance for BSW

Hardware

 single processor, a few buses, sensors and act **Requirements:**

Software tasks should be schedulable. CPU utilization should not exceed 50% load

Application Software (ASW) Basic Software (BSW)

TERMA[®]

Hardware

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [81]

Modeling in UPPAAL

TERMA®

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [82]

Gantt Chart 1. cycle

Fig. 11. Gantt chart of a schedule from the first cycle: green means ready, blue means running, cyan means suspended, red means blocked. R stand for resources: CPU_R=0, Icb_R=1, Sgm_R=2, PmReq_R=3, Other_RCS=4, Other_SF1=5, Other_SF2=6.

Blocking & WCRT

		Specification			Blocking times				WCRT		
ID	Task	Period	WCET	Deadline	Terma	UPPAAL	Diff	Terma	UPPAAL	Diff	
1	RTEMS_RTC	10.000	0.013	1.000	0.035	0	0.035	0.050	0.013	0.037	
2	AswSync_SyncPulseIsr	250.000	0.070	1.000	0.035	0	0.035	0.120	0.083	0.037	
3	Hk_SamplerIsr	125.000	0.070	1.000	0.035	0	0.035	0.120	0.070	0.050	
4	SwCyc_CycStartIsr	250.000	0.200	1.000	0.035	0	0.035	0.320	0.103	0.217	
5	SwCyc_CycEndIsr	250.000	0.100	1.000	0.035	0	0.035	0.220	0.113	0.107	
6	Rt1553_Isr	15.625	0.070	1.000	0.035	0	0.035	0.290	0.173	0.117	
7	Bc1553_Isr	20.000	0.070	1.000	0.035	0	0.035	0.360	0.243	0.117	
8	Spw_Isr	39.000	0.070	2.000	0.035	0	0.035	0.430	0.313	0.117	
9	Obdh_Isr	250.000	0.070	2.000	0.035	0	0.035	0.500	0.383	0.117	
10	RtSdb_P_1	15.625	0.150	15.625	3.650	0	3.650	4.330	0.533	3.797	
11	RtSdb_P_2	125.000	0.400	15.625	3.650	0	3.650	4.870	0.933	3.937	
12	RtSdb_P_3	250.000	0.170	15.625	3.650	0	3.650	5.110	1.103	4.007	
14	FdirEvents	250.000	5.000	230.220	0.720	0	0.720	7.180	5.153	2.027	
15	NominalEvents_1	250.000	0.720	230.220	0.720	0	0.720	-7.900	5.873	2.027	
16	MainCycle	250.000	0.400	230.220	0.720	0	0.720	8.370	6.273	2.097	
17	HkSampler_P_2	125.000	0.500	62.500	3.650	0	3.650	11.960	5.380	6.580	
18	HkSampler_P_1	250.000	6.000	62.500	3.650	0	3.650	18.460	11.615	6.845	
19	Acb_P	250.000	6.000	50.000	3.650	0	3.650	24.680	6.473	18.207	
20	IoCyc_P	250.000	3.000	50.000	3.650	0	3.650	27.820	9.473	18.347	
21	PrimaryF	250.000	34.050	<mark>59.600</mark>	5.770	0.966	4.804	65.470	54.115	11.355	
22	RCSControlF	250.000	4.070	239.600	12.120	0	12.120	76.040	53.994	22.046	
23	Obt_P	1000.000	1.100	100.000	9.630	0	9.630	74.720	2.503	72.217	
24	Hk_P	250.000	2.750	250.000	1.035	0	1.035	6.800	4.953	1.847	
25	StsMon_P	250.000	3.300	125.000	16.070	0.822	15.248	85.050	17.863	67.187	
26	TmGen_P	250.000	4.860	250.000	4.260	0	4.260	77.650	9.813	67.837	
27	Sgm_P	250.000	4.020	250.000	1.040	0	1.040	18.680	14.796	3.884	
28	TcRouter_P	250.000	0.500	250.000	1.035	0	1.035	19.310	11.896	7.414	
29	Cmd_P	250.000	14.000	250.000	26.110	1.262	24.848	114.920	94.346	20.574	Ν
30	NominalEvents_2	250.000	1.780	230.220	12.480	0	12.480	102.760	65.177	37.583	-
31	SecondaryF_1	250.000	20.960	189.600	27.650	0	27.650	141.550	110.666	30.884	
32	SecondaryF_2	250.000	39.690	230.220	48.450	0	48.450	204.050	154.556	49.494	
33	Bkgnd_P	250.000	0.200	250.000	0.000	0	0.000	154.090	15.046	139.044	

Marius Micusionis

TERMA Case Follow-Up

ISOLA 2012

TERMA Case – **Statistical MC**

Limit cycles	$_{\%}^{\rm f}$	lpha	ε	Total traces, $\#$	Er #	ror traces Probability	Earlie cycle	est Error offset	Verification time
1	0	0.0100	0.005	105967	1928	0.018194	0	79600.0	1:58:06
1	50	0.0100	0.005	105967	753	0.007106	0	79600.0	2:00:52
1	60	0.0100	0.005	105967	13	0.000123	0	79778.3	2:01:18
1	62	0.0005	0.002	1036757	34	0.000033	0	79616.4	19:52:22
160	63	0.0100	0.05	1060	177	0.166981	0	81531.6	2:47:03
160	64	0.0100	0.05	1060	118	0.111321	1	79803.0	2:55:13
160	65	0.0500	0.05	738	57	0.077236	3	79648.0	2:06:55
160	66	0.0100	0.05	1060	60	0.056604	2	82504.0	2:62:44
160	67	0.0100	0.05	1060	26	0.024528	1	79789.0	2:64:20
160	68	0.0100	0.05	1060	3	0.002830	67	81000.0	2:67:08
640	69	0.0100	0.05	1060	8	0.007547	114	80000.0	12:23:00
640	70	0.0100	0.05	1060	3	0.002830	6	88070.0	12:30:49
1280	71	0.0100	0.05	1060	2	0.001887	458	80000.0	25:19:35

5

TERMA Case – Conclusion

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [87]

Multi-Processor

Handling realistic applications?

Timed Automata for a task

ICT Energy PhD School, Fiuiggi, July 2015

Smart phone

ICT Energy PhD School, Fiuiggi, July 2015

Energy and **Scheduling**?

A non-experts understanding of CMOS

 Power consumption mainly by dynamic power

Dynamic Voltage Scaling & Task Scheduling

CPU not always fully utilized ! We may occasionally/dynamically lower frequency/supply voltage ! Save Energy

Energy Optimal Scheduling

Energy Optimal Scheduling = Optimal Infinite Path

Value of path σ : val(σ) = lim_{n!1} c_n/t_n Optimal Schedule σ^* : val(σ^*) = inf_{σ} val(σ)

Approximate Optimal Schedule

Preliminary Results

BC7T Energy PhD School, Fiuiggi, July 2015

Preliminary Results

BOST Energy PhD School, Fiuiggi, July 2015

Energy Automata

Managing Resources

Example

In some cases, resources can both be consumed and regained.

The aim is then to keep the level of resources within given bounds.

Kim Larsen [100]

Consuming & Harvesting Energy

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [101]

Energy Constrains

- Energy is not only consumed but may also be regained
- The aim is to continously satisfy some energy constriants

Results (so far)

Untimed		games	existential problem	universal problem	
	L	$\in UP \cap coUP$ P-h	€P	∈P	
	L+W	$ \begin{array}{c} \in NP \cap coNP \\ P\text{-}h \end{array} $	∈P	∈P	
	L+U	EXPTIME-c	∈ PSPACE NP-h	∈P	

P Bouyer, U Fahrenberg, K Larsen, N Markey,... Infinite runs in weighted timed automata with energy constraints. 2008.

Kim Larsen [103]

One Weight Results

1 (Clock	games	existential problem	universal problem
	L	?	$\in P$	$\in P$
	L+W	?	$\in P$	$\in P$
	L+U	undecidable	decidable (flat)	?

1½ Clock		games	existential problem	universal problem	
	L ?		decidable	decidable	
	L+W	?	decidable	decidable	

>3 Clocks		games	existential problem	universal problem		
	L	undecidable	undecidable	PSPACE-c		
	L+W	undecidable	undecidable	PSPACE-c		

P Bouyer, U Fahrenberg, K Larsen, N Markey,... Infinite runs in weighted timed automata with energy constraints. 2008. P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey: Timed automata with observers under energy constraints. HSCC 2010 P. Bouyer, K. G. Larsen, and N. Markey. Lower-bound constrained runs in weighted timed automata. QEST 2012

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [104]

Recharge Automata

ICT Energy PhD School, Fiuiggi, July 2015

Kim Larsen [105]

Recharge Automata

